Separating Essentials from Incidentals:
An Execution Architecture for Real-Time Control Systems

Daniel Dvorak and Kirk Reinholtz
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

818-393-1986
{daniel.dvorak,william.k.reinholtz} @jpl.nasa.gov

Abstract

Large multi-threaded real-time control systems can be notoriously hard to verify because source code often intertwines several
concerns such as functionality, control flow, data flow, synchronization, timing, protocol, and runtime efficiency. Knowing
that these concerns can interact in unforeseen ways, system-level testing generates only minimal confidence in a system’s
dependability. This paper describes an execution architecture that makes such systems far more analyzable and verifiable by
aggressive separation of concerns. The architecture separates two key software concerns: transformations of global state, as
defined in pure functions; and sequencing/timing of transformations, as performed by an engine that enforces four prime
invariants. The important advantage of this architecture, besides facilitating verification, is that it encourages formal

spectfication of systems in a vocabulary that brings systems engineering closer to software engineering.

1. Introduction
1.1 Sequencing

The Jet Propulsion Laboratory (JPL)—part of the California Institute of Technology—serves as NASA’s lead center for the
robotic exploration of space. For many years, JPL’s spacecraft have employed a top-level execution mechanism known as
“sequencing” in which parameterized commands are sent to tasks at specific instants in time. Typically, a sequence engine
runs multiple sequences concurrently. Sequences are designed by ground controllers, carefully checked and simulated, and
then transmitted to the spacecraft where they are executed at the specified time. The end result is that the timing and ordering
of activities onboard is highly predictable. That predictability has long been a comfort to mission operations, but it has
become increasingly problematic as JPL conducts more in situ mission of exploration, such as running rovers on the surface

of Mars.

http://Qjpl.nasa.gov

1.2 MDS Architecture

Given the long round-trip light-time delays of planetary missions and the need for rovers and other spacecraft to react more
quickly to events and hazards, JPL has invested in a significant new architecture in which top-level control is based on goals
rather than commands and in which execution timing is based on goal success/failure as well as temporal constraints. This
architecture, named MDS (Mission Data System), is based on the unifying notion of physical state and how a control system
estimates and controls state [1]. MDS emphasizes explicit representation of physical states (both continuous and discrete
states), explicit models of hardware and physical effects, and goal-oriented operation that enables varying levels of onboard

autonomy.

The MDS architecture cleanly separates several concerns: it separates estimation from control, it separates models of how
things work from decision-making, it distinguishes between evidence and state knowledge, it separates deliberative and

reactive control, it distinguishes between goals and commands, and it separates data management from data transport.

As shown in Figure 1, real-time control loops in MDS invoive

State Variable

four kinds of components: hardware adapters, state variables,

state updates, state estimates

estimators, and controllers. There is a hardware adapter for

Estimator Controller

each controllable hardware unit, and each one provides

- L. measurements
software interfaces for sending commands and obtaining

Hardware Adapter $
measurements. A state variable is a component that holds

Figure 1. A simple hard real-time control loop in MDS

information about a physical state (such as rover position) and .
phy (P) involves data flows among four components.

whose value history is made available as telemetry. An estimator interprets measurements from potentially multiple sensors in
order to generate state estimates. A controller compares current state estimates to a ‘goal’ (a constraint on the value of a state

variable over a time interval) and issues commands to actuators, as needed, to influence a physical state.

The dominant data flow around a control loop involves four flows: controllers query state variables for state estimates;
controllers submit commands to hardware adapters; estimators query hardware adapters for measurements; and estimators

update state variables.

The MDS architecture focuses on the things that a systems engineer must analyze and specify, but is less explicit about a
number of things that must be decided in a practical real-time software implementation. This paper presents an expansion of

the MDS architecture to address issues of execution architecture.

2. Proposed Execution Architecture

2.1 Pure Functions, Engine, and Prime Invariants

The proposed architecture, called “Verifiable MDS Architecture” (VMA), separates two key software concerns. First, each
individual transformation of global state is written as a pure function: one whose results depend only upon its arguments.
Second, the sequence of transformations is managed by an engine that must maintain certain invariants, but is otherwise free

of design constraint (this is a pure abstraction — if it acts like an “engine”, it’s an engine).

All engine implementations are required to maintain the following invariants. The purpose of these invariants is to ensure that
the engine is aware of all inputs and outputs of all functions (so it can manage interactions and dependencies), and that the
functions have transaction semantics so that interactions can be completely managed by the engine without knowledge of the
semantics of the functions. Transformation semantics are thus strictly determined by the function code, and interactions are

strictly determined by the engine. The concerns are separated. The following are the engine’s prime invariants:

1. No function will ever see any of its arguments change in value while that function is executing (though they can be
allowed to change while the function is executing, the function won’t see those changes: it in effect operates upon

captured copies of the values).
2. Each function is annotated to use either:

a. value semantics, in which case the arguments are in effect copied for use by the function (and so they can be

written by others while the function is executing); or

b. reference semantics, in which case the engine ensures that the arguments are neither read nor written by

other functions while the function is executing.

3. For all functions that return multiple values, those values will be updated simuitaneously insofar as any function can

detect (this greatly reduces some branching in correctness analysis).

4. No function will make reference to or update any state whatsoever other than that passed directly as arguments to

that function.

Note that the invariants above are not sufficient to determine the order in which the functions must be executed. This is

intentional, because we want to allow an imperative “virtual machine” form of engine where the order is directly specified,

rather than deduced. That said, later work may attempt to formalize the dependency information such that it can become part

of the invariants. Time will tell. For now we want to enable at least one “obvious” engine implementation.

2.2 Benefits

1.

Separation of concerns: A driving advantage is that this approach separates the management of interactions

(protocol) from the semantics of a particular transformation. Many of the concrete advantages in this list come of this

separation.

Semantics do not depend on the specifics of the engine. As long as the engine obeys the prime invariants, the system
will work. It is thus reasonable to have different engines for different needs, e.g. one that has distributed computation

and another that doesn't.

Encourages formal specification of the system. The approach adds a couple of formal elements to the system
concept: transformation functions and interactions. These items should enter the vocabulary of the systems engineers,

giving them one more direct connection between systems engineering and the code.

Because of the additional formality in modeling and interactions, this should make the architecture an enticing target

for and benefactor of future work in formal modeling, specification, and analysis.

The MDS concept of models, such as state effects models and measurement models and command models, are

naturally expressed as pure functions.

Since the functions are pure by definition, then they are:
a. easier to write correctly than functions that contain internal state;
b. easier to unit test due to limited reference to the environment;

c. easier to write and runtime confirm pre- and post-conditions, perhaps in the form of pre_f(...) and post_f(...)

for each f(...) that can be executed by the engine, or compietely elided during production; and

d. exception safety is trivial. If the function throws an exception, it is simply aborted without updating the
system state. Since it’s a pure function, it can’t leave the system in an intermediate state. Of course recovery

is still an issue, because the function will throw again if given the same arguments.

7. Reversible system. If you save each version of each output of each function, and keep track of the order in which
things occurred, you could actually reverse execution of the system. That could aid in fault recovery, and could make

debugging easier because the whole history of the evolution of the system is there to examine.

8. Easier to design and implement the system because the systems engineers probably specify most of the functions and

their rules of interaction; programmers can focus on the function bodies.
- 9. Can abort a function during execution because it’s pure. This gives another option in handling real-time overruns.

10. Easy to execute in parallel/distributed manner. A consequence of separating function semantics from interactions is
that functions that don’t interact can be executed in parallel. Most of the engine types described below trivially
utilize multiple threads, but the function bodies are completely independent of that: there are no locks or other

synchronization mechanisms anywhere in those functions.

11. Scales to parallel and distributed systems. The approach scales more easily than e.g. components, because the

essentials of the interactions are known by the system.

12. Minimal use of the heap. Since the approach puts the significant data structures into global memory, and function
computations are on the stack, and the basic computation model is oriented towards discrete transformations, it may
turn out that the heap is used less than in a component architecture. Use of the heap greatly increases the difficulty of

proving a system correct, so reduced heap use should translate to lower development costs.

13. Suitable for RTSJ implementation. VMA encourages the use of only global memory (“immortal memory”) for the
state and the stack (stack + “scoped memory”) for the transformation functions. It is very likely that this will make it

straightforward to render VMA into RTSJ, and unlikely to be full of corner cases.
14. Events and notifications are elevated into the architecture.
15. Debugging - System can be single-stepped, run backwards, stopped...

2.3 The Engine

There are numerous styles of engine that could execute the proposed architecture, and the architecture is defined to allow this.

This section develops a complete specification for a “classical” sensor—actuator loop in MDS, using a virtual machine style

of engine. The following code fragment captures the basic MDS control loop. The comments draw attention to some key

points.

-- Example of MDS control loop in VMA.

-- NOTES

-- Notation

-- SV* a state variable

-— VH* a value history

-- HAread a hardware adaptor that reads a sensor

-- HAwrite is a hardware adaptor that writes to actuator.
- m a measurement

-— dm a distilled measurement

-— Anything on LHS is in global state

-~ For now just assume this executes top to bottom,

-- as part of a rate group.

-~ It's important you remember the execution model:

-— 1. Each function is allowed to reference ONLY the state passed as arguments.
-— 2. It's permitted but not encouraged to create global objects of ad-hoc state,
-= called CS* here, to preserve state across function calls.

-—— 3. The arguments are constant and are in effect copies of the state.

-— a. If the state is too large to allow value semantics, a function

-- can be annotated that it used reference semantics. In that case

- the args are blocked for both read and write by other functions,

-— for the duration of execution of the function. Abort is not

-— supported in this case.

-— 4. The return values are written atomically back into the global state.

-- Run everything between the curly braces at 5Hz. If there are
-- lots of these in the 5Hz rate group, you can either write

-~ them as separate cyclic groups like this, in which case

-- their interactions are not managed, or you can put them

-- sequentially in a single cyclic to force a particular

-~ order. In real life cyclic() will have deadline

-- mechanisms, not shown here. Thanks to the abortable

-- nature of pure functions, we can also cleanly abort any

-- operations that overrun their time bound, again not shown.

cyclic(5Hz) {
-- This set reads a measurement, distills it, and updates

-- the value history of the state variable. You don't
-- have to use the distillation idiom, of course.

VHm = HAread (VHm) -~ New measurements(s) appended to VHm
VHdml = estl(VH, SVother...) -- distill it and append to VHdm
VHAm2 = est2(VHAm2, VHdml, SVother...) -- distill more if you wish
-- Can distill zero or more times
SV.vh = est(SvV.vh, VHdAm2, SV.xgoal) -- Final estimate. Note only vh updated.

-- The control process uses the value history and x-goal to
-- compute a command, if any. It is a principle of the

-- state architecture that there is only zero or one

-- command "between" the controller and the hardware

-~ adapter at any time, that's why there is no command

-- queue. The engine must run the ctrl() and HAwr() in a

-- coordinated manner so the cmd doesn't get overwritten.

VHstatus,cmd = ctrl(SvV.vh, SV.xgoal,VHstatus) -- Compute new command if any.
VHstatus,cmd, VHc = HAwr (cmd, VHc, VHstatus) -- Do stuff + move cmd into VHc and
-- empty cmd slot.
-- Now the cmd is in the VHc, indicating that the
-- hardware is aware of the command and so should
-- be considered in the estimation process.
-- ctrl() and HAwr() should return immediately, not
-- loop waiting for the xgoal to either succeed or
-- fail.

2.3.1 Events

The engine as described so far can only execute sequences of functions in a cyclic manner. However, the MDS concept
includes event-triggered execution. For example, when an executable goal (xgoal) succeeds, fails, or is aborted, that event
initiates computations that result in (among other things) a new xgoal for the goal achiever. Although this could be

implemented using polling, it is more naturally an event, and so this architecture should support events.

Any change of state can raise an event. A predicate written on the state plus changes to state can be used to guard a sequence
of functions. The engine will cause that sequence to execute some time after the predicate becomes true. In effect, every time
any state is changed, all predicates are tested, and any that are true are marked as true. The actual implementation should be

more efficient than that, but the effect is identical.

This code fragment shows how to handle a change to goal status.
-- Example of event-triggered execution.

-- These are from the first example. Each operation that might
~-- note a change to status simply updates a state item "status".

VHstatus,cmd = ctrl(SvV.vh, VHstatus, SV.xgoal)
VHstatus,cmd, VHc = HAwr (cmd, VHstatus, VHc)

-- The predicate in this "when" sequencing block is, in effect,
-- checked every single time anything changes in the state of the
-- system. If the predicate is true, the block is marked for

-- eventual execution. We'll discuss the timing of this in the
-- "real-time" section that follows.

when (latest (VHstatus) == goalfailed) {
-- whatever

}

2.3.2 Exogenous events

It may be useful to allow code outside of our world (e.g. from a device driver) to interact with code inside of our world (e.g.
insert a new status value into VHstatus) in a “push” mode where the outside entity controls when the interaction occurs. We
can already do “pull” style, via hardware adaptors or some less formal variant thereof (i.e. a “hardware adaptor” that reads

performance counters instead of a gyro.

Consider goal failure, for example. A goal might fail during the execution of the achiever, when the achiever discovers it can’t
find any command that will keep the state trajectory within the constraints. Or, the goal might fail when a device driver
interrupt handler notices some register value has gone out of bounds. In the latter case, the most timely response occurs when
the driver itself can indicate that something has happened (e.g. goal status goes from OK to failed), so the engine notices it

ASAP.

Pushes from the outside world have great potential to complicate the compute model and make it less robust. For now we
prefer a very restricted model, something like this, which maps the external event into normal operations as far upstream as I

can come up with:
1. The external code “pushes” notification of its interest in being noticed via a semaphore.
2. The engine, at some well defined point in its execution, checks the semaphore.

3. If the engine finds that a notification has occurred, an insertion into the value history bound to that notification is

executed (perhaps a timestamp is inserted, or an incrementing counter).

4. From that point on, the system behaves exactly as though that insertion occurred through a normal operation on a

VH.

Note this interface is absolutely not available to normal code! Normal code can update stuff in the normal way, and it is very
important that it remains this way. Otherwise this breaks the “pure function” model, the interactions become hidden, and other
bad things happen. As a reminder, here's the normal way to track status:

-- Normal way to maintain status information on some operation

...,VHstatus, ... = func(...,VHstatus,...)

when (latest (VHstatus) == Failed){ ... }

2.3.3 Parallel execution

In this model of the engine, some of the dependencies are captured only in the sequencing of the function calls. The engine
will not perform analysis beyond that because we haven’t had time to define how to do so and because the MDS state

architecture is supposed to be resilient in the face of such conditions. But, for the record, here's the kinds of races that could

occur

b = f(a)

c = g(b) -- Dependency: Can't start until f(a) completes.
-- Also called RAW: Read After Write hazard.

b = f(a

a = g(c) -- Antidependency: Can't start until f(a) completes.
-- Also called WAR: Write After Read hazard.

b = f(a)

b = f(c) -- Write ordering: Must write second b second.

-- Also called WAW: Write after Write hazard.:

Within a single sequence of operations—say the body of a cyclic(){...}—the engine can cheaply detect the above conditions,
and execute the body in parallel with synchronization to improve performance. This is what super-scalar processors do, and
approaches for scheduling in the face of these hazards are well defined (e.g. see Hennessey and Patterson). It would be easy to
implement the engine so that it uses multiple CPU threads to speed up a program like the above using super-scalar concepts,

without violating any of the causal types noted above.

3. Summary

The architecture described above is simple in its separation of transformations and the applications of transformations, and it
is formal in a way that invites formal analysis for verification. Pure functions are easy to write and easy to test, and they never
have to use synchronization mechanisms (a common source of defects in multi-threaded programs). This makes them far more
reusable than code that tries to handle concerns other than pure transformations. Importantly, the architecture elevates
“protocol” into the architecture; the ordering and data dependencies among transformations become explicit inputs to the
engine. Similarly, timeliness characteristics such as periods, costs, and deadlines are inputs to the engine and are not

embedded in code for transformations.

4. Acknowledgements

This work was performed at the Jet Propulsion Laboratory of California Institute of Technology under contract with the

National Aeronautics and Space Administration. We thank the Office of the Chief Technologist for funding under the

Research & Technology Development (R&TD) Program, and the strong support of the R&TD committee on Advanced

Software Techniques & Methods Initiative.

5. REFERENCES

[1] Dvorak, D., Rasmussen, R., Reeves, G., and Sacks, A. Software Architecture Themes in JPL’s Mission Data System. Proceedings of
the 2000 IEEE Aerospace Conference, Big Sky, Montana, March, 2000.

[2] Hennessy and Patterson, TBD.

